Sufficient Conditions for Global Minimality of Metastable States in a Class of Non-convex Functionals: A Simple Approach Via Quadratic Lower Bounds

نویسندگان

  • David Shirokoff
  • Rustum Choksi
  • Jean-Christophe Nave
چکیده

We consider mass-constrained minimizers for a class of non-convex energy functionals involving a double-well potential. Based upon global quadratic lower bounds to the energy, we introduce a simple strategy to find sufficient conditions on a given critical point (metastable state) to be a global minimizer. We show that this strategy works well for the one exact and known metastable state: the constant state. In doing so, we numerically derive an almost optimal lower bound for both the order–disorder transition curve of the Ohta–Kawasaki energy and the liquid–solid interface of the phase-field crystal energy.We discuss how this strategy extends to nonconstant computed metastable states, and the resulting symmetry issues that one must overcome. We give a preliminary analysis of these symmetry issues by addressing the global optimality of a computed lamellar structure for the Ohta–Kawasaki energy in one (1D) and two (2D) space dimensions.We also consider global optimality of a nonconstant state for a spatially in-homogenous perturbation of the 2D Ohta–Kawasaki energy. Finally we use one of our simple quadratic lower bounds to rigorously prove that for certain values of the Ohta–Kawasaki parameter and aspect ratio of an asymmetric torus, any global minimizer v(x) for the 1D problem is automatically a global minimizer for the 2D problem on the asymmetric torus. Communicated by Robert V. Kohn. D. Shirokoff Department of Mathematical Sciences, NJIT, Newark, NJ, USA e-mail: [email protected] R. Choksi (B) · J.-C. Nave Department of Mathematics and Statistics, McGill University, Montreal, Canada e-mail: [email protected] J.-C. Nave e-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sufficient Conditions for Global Minimality of Metastable States in a Class of Non-Convex Functionals: a Simple Approach via Convex Lower Bounds

We consider mass-constrained minimizers for a class of non-convex energy functionals involving double-well potentials. Based upon global convex lower bounds to the energy, we introduce a simple strategy to find sufficient conditions on a given critical point (metastable state) to be a global minimizer. We show that this strategy works well for the one exact and known metastable state: the const...

متن کامل

Global convergence of an inexact interior-point method for convex quadratic‎ ‎symmetric cone programming‎

‎In this paper‎, ‎we propose a feasible interior-point method for‎ ‎convex quadratic programming over symmetric cones‎. ‎The proposed algorithm relaxes the‎ ‎accuracy requirements in the solution of the Newton equation system‎, ‎by using an inexact Newton direction‎. ‎Furthermore‎, ‎we obtain an‎ ‎acceptable level of error in the inexact algorithm on convex‎ ‎quadratic symmetric cone programmin...

متن کامل

Inequalities of Ando's Type for $n$-convex Functions

By utilizing different scalar equalities obtained via Hermite's interpolating polynomial, we will obtain lower and upper bounds for the difference in Ando's inequality and in the Edmundson-Lah-Ribariv c inequality for solidarities that hold for a class of $n$-convex functions. As an application, main results are applied to some operator means and relative operator entropy.

متن کامل

A Recurrent Neural Network for Solving Strictly Convex Quadratic Programming Problems

In this paper we present an improved neural network to solve strictly convex quadratic programming(QP) problem. The proposed model is derived based on a piecewise equation correspond to optimality condition of convex (QP) problem and has a lower structure complexity respect to the other existing neural network model for solving such problems. In theoretical aspect, stability and global converge...

متن کامل

A Semidefinite Optimization Approach to Quadratic Fractional Optimization with a Strictly Convex Quadratic Constraint

In this paper we consider a fractional optimization problem that minimizes the ratio of two quadratic functions subject to a strictly convex quadratic constraint. First using the extension of Charnes-Cooper transformation, an equivalent homogenized quadratic reformulation of the problem is given. Then we show that under certain assumptions, it can be solved to global optimality using semidefini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Nonlinear Science

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2015